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Abstract

This paper is concerned with the transverse vibration of uniform Euler–Bernoulli beams under linearly
varying fully tensile, partly tensile or fully compressive axial force distribution. The system parameters are
the constant part of the axial force and the constant of proportionality of the varying part. The mode shape
differential equation is linear with variable coefficients. The general solution is derived and expressed as the
super-position of four independent power series solution functions. The frequency equations of the 16
combinations of classical boundary conditions are listed. The first three frequency parameters are tabulated
for example combinations of the system parameters. Increase in the values of one or both of the system
parameters ‘stiffens’ the system and results in increase in the frequency parameter. If one or both system
parameters are negative, combinations exist for which a frequency parameter is zero. This is the Euler
buckling condition i.e., onset of dynamic instability. Example combinations of the system parameters when
buckling occurs are tabulated. The results tabulated may be used to judge frequencies, buckling parameter
combinations obtained by other methods.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Structural elements, components of mechanisms and the like are often subjected to axially
distributed force. For example a tie-bar is under a constant axial force, a vertically oriented
uniform beam in a gravity field is subjected to a linearly distributed axial force and a beam in a
centrifugal field to a parabolic distribution. The transverse vibration of uniform tie-bars is
discussed in textbooks [1]. Bokian [2] presented (in graphical form), the frequencies of a uniform
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beam under constant axial compressive force. Bokian [3] extended the work in Ref. [2] to a
uniform tie-bar for 10 combinations of classical boundary conditions.
Paidoussis and Des Trois Maissons [4] used the Galerkin method to study the transverse

vibration of ‘hanging’ and ‘standing’ uniform cantilevers taking account of the self-weight.
Schafer [5] used the Rayleigh–Ritz method to investigate the same problem. Fauconneau and
Laird [6] used the Rayleigh–Ritz method (with 8 sinusoidal terms in the Ritz manifold) to obtain
upper bound frequencies of a simply supported uniform beam under a linearly distributed axial
force. A method to obtain lower bounds was described. Approximate frequencies obtained by
replacing the distributed load by a ‘lumped’ axial force were included. In the absence of ‘exact’
solution, no comments were offered on the ‘error’ estimates. Pilkington and Carr [7] used a
method based on the results of static buckling to obtain ‘lower’ bound frequencies for the problem
in Ref. [6]. Yokoyama [8] used the finite element method to study the vibration of ‘hanging’
Timoshenko and Euler–Bernoulli uniform cantilevers.
The mode shape differential equation of uniform Euler–Bernoulli beams under linearly varying

axial force was derived in Refs. [5–8] and because it had variable coefficients these references
concluded that analytical solution was ‘difficult or impossible’. The mode shape differential equation
is linear and this aspect appears to have been overlooked. Naguleswaran [9] solved the mode shape
differential equation of a ‘hanging’ uniform cantilever by the method of Frobenius [10]. The general
solution consisted of the super-position of four linearly independent power series solution functions.
The frequency equation for ideal clamped–free boundary conditions was formulated. The first three
natural frequencies of uniform cantilevers were tabulated for positive and negative values of the
gravity parameter (a measure of gravity effect over flexural rigidity effect).
In the present paper a more general case is considered. The axial tension distribution consisted

of a constant part and a part proportional to the axial co-ordinate. These are the two system
parameters. The mode shape equation is solved and frequency equations of all the 16
combinations of classical boundary conditions are listed. Wholly tensile, partly tensile and
wholly compressive axial force distribution is considered.
Buckling under self-weight of a vertical cantilever was investigated as a problem in statics by

Greenhill [11] and by Frish-Fay [12] and the first critical gravity parameter was presented in terms
of Bessel’s functions. Naguleswaran [9] approached the problem as the limiting case at which a
natural frequency is zero and listed the first three critical gravity parameters of a ‘standing’
cantilever. Gooch and Raine [13] used the low frequencies near buckling condition of a ‘standing’
cantilever to design a scaled version of the Len Lye kinetic sculpture Blade noted for the aesthetic
performance. In the present paper example combinations of the system parameters for which a
natural frequency is zero (dynamic instability or buckling) are tabulated for 16 combinations of
classical boundary conditions.
The results tabulated in the present paper are not found in any other publications. The results

may be used to judge frequencies or buckling parameter combinations obtained by other methods.

2. Theory

The flexural rigidity, mass per unit length and length of the uniform Euler–Bernoulli beam OA

considered in this paper are EI ;m and L respectively (see Fig. 1). The end O is axially restrained
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while A is axially free. The origin of the co-ordinate system chosen is at O with the abscissa along
the neutral axis of the beam. Tð0Þ and TðLÞ are the axial force at O and A respectively. The linear
axial force distribution TðxÞ at abscissa x is

TðxÞ ¼ Tð0Þ þ ½TðLÞ � Tð0Þ�
x

L
: ð1Þ

Positive axial force is tensile and negative axial force is compressive.
For free vibration at frequency o; if at abscissa x; yðxÞ is the amplitude of deflection of the

beam, MðxÞ and QðxÞ are the amplitudes of bending moment and shearing force, then
consideration of the equilibrium of a differential element [1] will lead to

MðxÞ ¼ EI
d2yðxÞ
dx2

; QðxÞ þ
dMðxÞ
dx

� TðxÞ
dyðxÞ
dx

¼ 0;
dQðxÞ
dx

þ mo2yðxÞ ¼ 0: ð2Þ

Introduce the dimensionless variables X ;Y ðX Þ; operators Dn; bending moment MðX Þ; shearing
force QðX Þ; axial force tðX Þ; constant axial force parameter t0; the variable axial force parameter
g; frequency parameter a defined as follows:

X ¼
x

L
; Y ðX Þ ¼

yðxÞ
L

; Dn ¼
dn

dX n
;

MðX Þ ¼
MðxÞL

EI
; QðX Þ ¼

QðxÞL2

EI
;

tðX Þ ¼
TðxÞL2

EI
; tð0Þ ¼

Tð0ÞL2

EI
;

tð1Þ ¼
TðLÞL2

EI
; g ¼ tð1Þ � tð0Þ; a4 ¼

mo2L4

EI
: ð3Þ

Eqs. (1) and (2) in dimensionless form are

tðX Þ ¼ tð0Þ þ gX ; MðX Þ ¼ D2½Y ðX Þ�; QðX Þ ¼ �D3½Y ðX Þ� þ ½tð0Þ þ gX �D½Y ðX Þ�;

D4½Y ðX Þ� � tð0ÞD2½Y ðX Þ� � gDfXD½Y ðX Þ�g � a4Y ðX Þ ¼ 0: ð4Þ

The dimensionless mode shape differential Eq. (4) is linear with variable coefficients and may be
solved by the method of Frobenius [10]. The power series solution sought is

Y ðX ; cÞ ¼
Xn¼N

n¼0

anþ1ðcÞX cþn ð5Þ

in which the coefficients anþ1ðcÞ are functions of the undetermined exponent c: Without loss of
generality the lead coefficient a1ðcÞ was chosen to be unity. Following the method of Frobenius,
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Fig. 1. The beam, co-ordinate system and the axial force distribution. The end O is axially restrained and A is axially

free.
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Y ðX ; cÞ was substituted into the mode shape differential equation and the coefficients chosen from
the recurrence relationship

anþ2ðcÞ ¼
tð0Þðc þ n � 1Þðc þ n � 2ÞanðcÞ þ gðc þ n � 2Þ2an�1ðcÞ þ a4an�2ðcÞ

ðc þ n þ 1Þðc þ nÞðc þ n � 1Þðc þ n � 2Þ
ð6Þ

subject to akðcÞ ¼ 0 if the subscript kp0: With these choices, Y ðX ; cÞ will satisfy the mode shape
differential Eq. (4) provided c is a root of the indicial equation

cðc � 1Þðc � 2Þðc � 3Þ ¼ 0: ð7Þ

The four power series solution functions are

Y ðX ; 0Þ ¼ EðX Þ ¼ 1þ ð0ÞX þ
tð0ÞX 2

2
þ ð0ÞX 3 þ

Xn¼N

n¼0

enþ5X
nþ4;

Y ðX ; 1Þ ¼ FðX Þ ¼ X þ ð0ÞX 2 þ
tð0ÞX 3

6
þ

gX 4

24
þ

Xn¼N

n¼0

fnþ5X
nþ5;

Y ðX ; 2Þ ¼ GðX Þ ¼ X 2 þ ð0ÞX 3 þ
tð0ÞX 4

12
þ

gX 5

30
þ

Xn¼N

n¼0

gnþ5X
nþ6;

Y ðX ; 3Þ ¼ HðX Þ ¼ X 3 þ ð0ÞX 4 þ
tð0ÞX 5

20
þ

gX 6

40
þ

Xn¼N

n¼0

hnþ5X
nþ7: ð8Þ

The coefficients of the solution functions are

enþ1 ¼ anþ1ð0Þ; fnþ1 ¼ anþ1ð1Þ;

gnþ1 ¼ anþ1ð2Þ; hnþ1 ¼ anþ1ð3Þ: ð9Þ

The derivatives of the solution functions may be obtained on a term by term basis. The general
solution of the mode shape differential equation is

Y ðX Þ ¼ C1EðX Þ þ C2F ðX Þ þ C3GðX Þ þ C4HðX Þ ð10Þ

in which C1;C2;C3 and C4 are constants of integration.

2.1. The frequency equations

The boundary conditions at O may be utilized to eliminate two of the constants of integration
in Eq. (10) and the mode shape expressed as

Y ðX Þ ¼ AUðX Þ þ BV ðX Þ; ð11Þ

where A and B are constants and the functions UðX Þ and V ðX Þ for the classical clamped ðclÞ;
pinned ðpnÞ; sliding ðslÞ or free ðfrÞ boundary conditions are

O cl : UðX Þ ¼ GðX Þ; V ðX Þ ¼ HðX Þ;

O pn : UðX Þ ¼ F ðX Þ; V ðX Þ ¼ HðX Þ;

O sl : UðX Þ ¼ EðX Þ; V ðX Þ ¼ GðX Þ;

O fr : UðX Þ ¼ EðX Þ � 0:5tð0ÞGðX Þ; V ðX Þ ¼ FðX Þ: ð12Þ
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Clamped, pinned and sliding boundary condition at O require two of the four solution functions
and free boundary condition require three functions. Had the support at O been resilient, all the
four functions will appear in the mode shape equation.
The mode shape Eq. (11) must satisfy the boundary conditions at A: The frequency equation

for the four classical boundary conditions at A are

A cl : Uð1ÞD½V ð1Þ� � D½Uð1Þ�V ð1Þ ¼ 0

A pn : Uð1ÞD2½V ð1Þ� � D2½Uð1Þ�V ð1Þ ¼ 0

A sl : D½Uð1Þ�D3½V ð1Þ� � D3½Uð1Þ�D½Vð1Þ� ¼ 0

A fr : D2½Uð1Þ�fD3½Vð1Þ� � tð1ÞD½V ð1Þ�g � fD3½Uð1Þ� � tð1ÞD½Uð1Þ�gD2½V ð1Þ� ¼ 0 ð13Þ

The natural frequencies of the selected system will be obtained from the roots of the
corresponding frequency equation. All the 16 frequency equations are considered in this paper.

2.2. ‘Equivalent’ tð0Þ and g pairs

The axial force distribution tðX Þ ¼ tð0Þ þ g� gX is a mirror image of tðX Þ ¼ tð0Þ þ gX : If the
boundary conditions at O and A are denoted by ði; jÞ where i or j ¼ 1; 2; 3 or 4 respectively stand
for cl; pn; sl or fr boundary conditions and if the nth frequency parameter corresponding to the
system parameters tð0Þ and g is denoted by anði; j; tð0Þ; gÞ then

anði; j; tð0Þ; gÞ ¼ aðj; i; tð0Þ þ g; � gÞ: ð14Þ

2.3. Natural frequency parameter calculations

The solution functions applicable to the boundary conditions at O were chosen from the
equation set (12). For the selected set of the system parameters tð0Þ and g and an assumed value
for a; sufficient number of terms were allowed so that at X ¼ 1:0; the functions and their
derivatives converged to a pre-set accuracy range. The frequency equation corresponding to the
boundary conditions at A was now chosen from the equation set (13). Starting with a trial value of
a ¼ 0:1 the left side of the frequency equation was evaluated. Calculations were repeated with step
increase of 0.1 in a till a sign change was observed. This indicates a ‘range’ in which a root lies.
Calculations were repeated in this ‘range’ with step change of 0.01 in a to narrow the ‘range’. An
iterative procedure based on linear interpolation was invoked to calculate the root to a pre-set
accuracy. The search was continued for the second root and so on.
Rigid body translation is possible for sl2sl; sl2fr and fr2sl systems. Rigid body translation

and rotation is possible for fr2fr system. The frequency equations of sl2sl; sl2fr; fr2sl and fr2fr

will have zero as the first root. The first three non-zero frequency parameters for nine example
combinations of tð0Þ and g are tabulated in Tables 1–3 as three 3-column sets. Calculations were
in double precision. It was found that for g > 800; computation in quadruple precision was
required and for g > 1000 greater computing precision was required.
In Table 1 the frequency parameters a1; a2 and a3 are tabulated for system parameter

combinations ½tð0Þ; g� ¼ ð10; 100Þ; ð10; 4Þ and ð10;�3Þ: For these example combinations of ½tð0Þ; g�;
in the range 0pXp1 the axial force TðX Þ is tensile. Increase in tð0Þ and/or g ‘stiffens’ the beam
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Table 1

The first three frequency parameters for tð0Þ ¼ 10:0 and g as stated in first row

BC g ¼ 100:0 g ¼ 4:0 g ¼ �3:0

a1 a2 a3 a1 a2 a3 a1 a2 a3

cl\cl 5.8768 8.9720 11.9595 5.0437 8.1234 11.2122 4.9587 8.0475 11.1503

cl\pn 5.5709 8.5122 11.3932 4.4144 7.4147 10.4694 4.2647 7.3077 10.3898

cl\sl 3.5912 7.0372 9.9341 2.8569 5.9054 8.9358 2.7525 5.7828 8.8455

cl\fr 3.5876 6.9736 9.7435 2.7660 5.4542 8.3161 2.5956 5.2063 8.1548

pn\cl 5.2505 8.2814 11.2405 4.3835 7.4000 10.4614 4.2906 7.3192 10.3960

pn\pn 5.0032 7.8617 10.6990 3.8322 6.7141 9.7281 3.6689 6.5970 9.6426

pn\sl 3.0737 6.4101 9.2566 2.4084 5.2461 8.2099 2.3111 5.1127 8.1122

pn\fr 3.0722 6.3678 9.1013 2.3588 4.8738 7.6238 2.2170 4.6126 7.4454

sl\cl 3.8567 6.8370 9.7732 2.8713 5.8892 8.9265 2.7415 5.7959 8.8526

sl\pn 3.7150 6.5037 9.2877 2.4770 5.2530 8.2117 2.2478 5.1071 8.1108

sl\sl 5.0483 7.8632 10.6986 3.8325 6.7141 9.7281 3.6691 6.5970 9.6426

sl\fr 5.0346 7.7720 10.4718 3.6296 6.2133 9.0873 3.3514 5.9897 8.9404

fr\cl 3.7806 6.3957 9.1596 2.7547 5.3778 8.2704 2.6142 5.2739 8.1912

fr\pn 3.6551 6.1204 8.7159 2.4090 4.8209 7.5858 2.1752 4.6632 7.4765

fr\sl 4.8344 7.3614 10.0767 3.5792 6.1613 9.0567 3.4052 6.0345 8.9647

fr\fr 4.8247 7.2942 9.8855 3.4222 5.7311 8.4498 3.1479 5.4969 8.2900

Table 2

The first three frequency parameters for tð0Þ ¼ 0:0 and g as stated in first row

BC g ¼ 100:0 g ¼ 4:0 g ¼ �3:0

O\A a1 a2 a3 a1 a2 a3 a1 a2 a3

cl\cl 5.7250 8.8109 11.8130 4.7869 7.9002 11.0326 4.6857 7.8173 10.9676

cl\pn 5.4086 8.3359 11.2317 4.0397 7.1368 10.2583 3.8332 7.0159 10.1736

cl\sl 3.4351 6.8590 9.7630 2.4649 5.5806 8.6951 2.2772 5.4327 8.5968

cl\fr 3.4311 6.7878 9.5543 2.1943 4.9046 7.9602 1.1784 4.5088 7.7723

pn\cl 5.0321 8.0843 11.0709 3.9954 7.1201 10.2498 3.8722 7.0291 10.1801

pn\pn 4.7784 7.6485 10.5129 3.2884 6.3611 9.4773 3.0136 6.2225 9.3847

pn\sl 2.8104 6.1822 9.0552 1.7298 4.8102 7.9158 1.4001 4.6342 7.8065

pn\fr 2.8091 6.1357 8.8846 1.5007 4.1880 7.1912 uns 3.6762 6.9714

sl\cl 3.7161 6.6309 9.5907 2.4799 5.5604 8.6850 2.2661 5.4492 8.6046

sl\pn 3.5779 6.2861 9.0884 1.8972 4.8191 7.9178 0.9580 4.6266 7.8050

sl\sl 4.8353 7.6496 10.5123 3.2890 6.3611 9.4773 3.0140 6.2225 9.3847

sl\fr 4.8206 7.5489 10.2658 2.8152 5.6715 8.7340 1.4611 5.3530 8.5659

fr\cl 3.5873 6.0423 8.8871 2.0777 4.7755 7.9057 1.6627 4.6300 7.8158

fr\pn 3.4756 5.7639 8.4230 1.5634 4.0703 7.1423 uns 3.8066 7.0116

fr\sl 4.5067 7.0264 9.8161 2.6194 5.5920 8.6981 2.0979 5.4235 8.5944

fr\fr 4.4981 6.9550 9.6082 2.1771 4.9449 7.9629 uns 4.5420 7.7672

uns, unstable mode.
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and results in an increase in an: For sl2sl; sl2fr and fr2sl beams the an listed is technically anþ1

and for fr2fr beams the an listed is technically anþ2:
In Table 2, the axial force in the range 0pXp1 for the system parameter combinations

½tð0Þ; g� ¼ ð0; 100Þ and ð0; 4Þ are positive and the comments made for Table 1 are applicable for the
first and second 3-column sets. The axial force in the range 0pXp1 for ½tð0Þ; g� ¼ ð0;�3Þ is
negative and for this combination, the first mode of pn2fr; fr � pn and fr2fr beams are unstable
(the critical values of g which initiates onset of instability is discussed later).
In Table 3, for the combination ½tð0Þ; g� ¼ ð�2; 100Þ; the axial tension is negative at O and is

positive at A and the frequency parameters fit the pattern of the first 3-column sets of Tables 1 and
2. For the combination ½tð0Þ; g� ¼ ð�2; 4Þ the axial tension is negative at O and positive at A but
unlike the first 3-column set, the first mode of pn2fr; fr2pn and fr2fr beams are unstable. For the
combination ½tð0Þ; g� ¼ ð�2;�3Þ; the axial tension is negative in the range 0pXp1: For this
combination of system parameters, cl2fr; pn2sl; pn2fr; sl2pn; sl2fr; fr2cl; fr2pn; fr2sl; and
fr2fr are past the first mode Euler buckling.
Faucanneau and Laird [6] presented a table of Rayleigh–Ritz frequencies of pn2pn beam for a

number of combinations of ½tð0Þ; g�: It was found that these frequencies were upper bounds to the
‘exact’ frequencies calculated by the present method and in most cases agreement to third places
after the decimal point obtained.

2.4. Euler buckling

A decrease in tð0Þ and/or g results in a decrease in a: For certain combinations of tð0Þ and g; a
frequency parameter may be zero. This is the onset of instability or Euler buckling and further
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Table 3

The first three frequency parameters for tð0Þ ¼ �2:0 and g as stated in first row

BC g ¼ 100:0 g ¼ 4:0 g ¼ �3:0

O\A a1 a2 a3 a1 a2 a3 a1 a2 a3

cl\cl 5.6930 8.7775 11.7830 4.7299 7.8532 10.9956 4.6245 7.7686 10.9299

cl\pn 5.3743 8.2993 11.1986 3.9500 7.0771 10.2145 3.7256 6.9530 10.1286

cl\sl 3.4011 6.8217 9.7277 2.3567 5.5082 8.6445 2.1306 5.3538 8.5444

cl\fr 3.3970 6.7487 9.5150 1.9677 4.7640 7.8827 uns 4.3181 7.6886

pn\cl 4.9843 8.0431 11.0361 3.9016 7.0599 10.2058 3.7689 6.9665 10.1353

pn\pn 4.7290 7.6037 10.4745 3.1398 6.2830 9.4247 2.8143 6.1389 9.3305

pn\sl 2.7468 6.1334 9.0133 1.4154 4.7071 7.8529 uns 4.5184 7.7409

pn\fr 2.7455 6.0859 8.8392 uns 3.9941 7.0939 uns 3.3601 6.8637

sl\cl 3.6854 6.5871 9.5529 2.3717 5.4870 8.6342 2.1196 5.3712 8.5523

sl\pn 3.5482 6.2397 9.0469 1.6825 4.7167 7.8549 cc 4.5102 7.7393

sl\sl 4.7889 7.6047 10.4738 3.1405 6.2830 9.4247 2.8149 6.1389 9.3305

sl\fr 4.7740 7.5018 10.2230 2.5060 5.5401 8.6577 uns 5.1930 8.4847

fr\cl 3.5394 5.9599 8.8292 1.7272 4.6176 7.8261 uns 4.4575 7.7337

fr\pn 3.4317 5.6802 8.3603 uns 3.8485 7.0424 uns 3.5312 6.9060

fr\sl 4.4255 6.9519 9.7613 2.1551 5.4527 8.6206 uns 5.2709 8.5141

fr\fr 4.4172 6.8795 9.5496 uns 4.7276 7.8529 uns 4.2481 7.6479

uns, unstable mode.

S. Naguleswaran / Journal of Sound and Vibration 275 (2004) 47–57 53



decrease in the system parameter/s will render the particular mode to be unstable. A necessary
(but not sufficient) condition for Euler buckling to occur is for part of the beam to be under
negative (compressive) axial force.
For a selected combination of boundary conditions and a given value of tð0Þ; the nth critical g

(denoted by gc;n) must satisfy the corresponding frequency Eq. (13) in which a ¼ 0: To calculate
the critical gc;n; the ‘search’ followed by the iterative routine used for frequency parameter
calculations was used. For the special case tð0Þ ¼ 0; rigid body motion is possible for pn2fr; sl2sl;
sl2fr; fr2pn; fr2sl and fr2fr boundary conditions and for these cases gc;1 ¼ 0: In Table 4 gc;1 and
gc;2 pairing with tð0Þ ¼ 10; 4; 1; 0;�0:5;�1;�2; and �4 are tabulated for cl2cl; cl2pn; cl2sl;
cl2fr; pn2cl; pn2pn; pn2sl and pn2fr boundary conditions. The other boundary conditions are
not listed because

gc;nðsl2clÞ ¼ gc;nðcl2slÞ ¼ gc;nðsl2slÞ;

gc;nðsl2pnÞ ¼ gc;nðcl2frÞ ¼ gc;nþ1ðsl2frÞ;

gc;nðfr2clÞ ¼ gc;nðpn2slÞ ¼ gc;nðfr2slÞ;

gc;nðfr2pnÞ ¼ gc;nðpn2fnÞ ¼ gc;nþ1ðfr2frÞ: ð15Þ

For the ½tð0Þ; gc� pairs, a decrease in tð0Þ is compensated by a corresponding increase in gc: In
Table 5, approximate gc;1 obtained by Fauconneau and Laird [6] using 8 terms-Rayleigh–Ritz
method are compared with ‘exact’ values obtained by the present method.
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Table 4

The first two critical gc for various tð0Þ

BC tð0Þ ¼ 10:0 tð0Þ ¼ 4:0 tð0Þ ¼ 1:0 tð0Þ ¼ 0:0

O\A gc;1 gc;2 gc;1 gc;2 gc;1 gc;2 gc;1 gc;2

cl\cl �92.3767 �175.740 �81.7753 �164.538 �76.4214 �158.912 �74.6286 �157.033

cl\pn �44.3406 �130.246 �35.7783 �119.383 �31.4564 �113.920 �30.0094 �112.095

cl\sl �36.8379 �102.673 �26.2477 �90.238 �20.7980 �83.978 �18.9562 �81.887

cl\fr �16.9986 �63.746 �8.9816 �52.050 �4.8670 �46.124 �3.4766 �44.138

pn\cl �74.9929 �150.759 �61.7249 �137.772 �54.8374 �131.237 �52.5006 �129.054

pn\pn �35.5755 �108.398 �25.5475 �95.300 �20.3384 �88.657 �18.5687 �86.431

pn\sl �32.7393 �85.758 �18.8726 �68.036 �10.7718 �58.984 �7.8372 �55.977

pn\fr �16.2148 �54.020 �7.1718 �37.511 �1.9375 �28.638 cc �25.638

BC tð0Þ ¼ �0:5 tð0Þ ¼ �1:0 tð0Þ ¼ �2:0 tð0Þ ¼ �4:0

O\A gc;1 gc;2 gc;1 gc;2 gc;1 gc;2 gc;1 gc;2

cl\cl �73.7306 �156.093 �72.8316 �155.152 �71.0303 �153.270 �67.4151 �149.499

cl\pn �29.2847 �111.181 �28.5591 �110.267 �27.1055 �108.437 �24.1879 �104.771

cl\sl �18.0303 �80.840 �17.1011 �79.793 �15.2323 �77.697 �11.4521 �73.500

cl\fr �2.7775 �43.144 �2.0758 �42.148 �0.6639 �40.154 2.1959 �36.155

pn\cl �51.3243 �127.962 �50.1425 �126.869 �47.7626 �124.682 �42.9348 �120.301

pn\pn �17.6772 �85.315 �16.7810 �84.199 �14.9746 �81.961 �11.3021 �77.472

pn\sl �6.3202 �54.479 �4.7683 �52.987 �1.5545 �50.021 5.3466 �44.191

pn\fr 1.0173 �24.139 2.0714 �22.645 4.3050 �19.682 9.3876 �13.957

S. Naguleswaran / Journal of Sound and Vibration 275 (2004) 47–5754



In Table 6 tc;1ð0Þ and tc;2ð0Þ pairing with g ¼ 10; 4; 1;�1;�2;�5;�10 and �20 are tabulated.
The approximate tc;1ð0Þ of pn2pn beam for various values of g obtained by Timoshenko and Gere
[14] using one term Rayleigh method are compared with ‘exact’ values in Table 7. The accuracy of
the approximate results for g > �2:0p2 is poor.
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Table 5

Rayleigh–Ritz gc;1 of pn–pn beam in Ref. [6] compared with ‘exact’ values

tð0Þ 0.0 �6.5 �41.5

gc;1 Ref. [6] 18.7 �6.5 83.0

gc;1 present �18.56873 �6.59013 82.89464

Table 6

The first two critical tð0Þ for various g

BC g ¼ 10:0 g ¼ 4:0 g ¼ 1:0 g ¼ �1:0

O\A tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ

cl\cl �44.4390 �85.755 �41.4721 �82.762 �39.9780 �81.263 �38.9780 �80.263

cl\pn �26.6628 �64.943 �22.7961 �61.784 �20.8441 �60.205 �19.5360 �59.154

cl\sl �14.7601 �44.511 �11.8520 �41.484 �10.3685 �39.979 �9.3685 �38.979

cl\fr �9.2673 �27.551 �5.2433 �24.314 �3.1679 �22.730 �1.7627 �21.685

pn\cl �23.5849 �64.424 �21.5640 �61.577 �20.5360 �60.154 �19.8441 �59.205

pn\pn �14.6983 �44.559 �11.8421 �41.491 �10.3679 �39.979 �9.3679 �38.979

pn\sl �5.2486 �27.069 �3.6244 �24.132 �2.7626 �22.685 �2.1679 �21.730

pn\fr �4.2182 �15.478 �1.8681 �11.974 �0.4916 �10.376 cc �9.376

BC g ¼ �2:0 g ¼ �5:0 g ¼ �10:0 g ¼ �20:0

O\A tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ tc;1ð0Þ tc;2ð0Þ

cl\cl �38.4768 �79.763 �36.9685 �78.261 �34.4390 �75.755 �29.3207 �70.732

cl\pn �18.8800 �58.628 �16.9040 �57.051 �13.5849 �54.424 �6.8540 �49.170

cl\sl �8.8652 �38.480 �7.3422 �36.987 �4.7601 �34.511 0.5658 �29.606

cl\fr �1.0539 �21.166 1.0960 �19.618 4.7514 �17.069 12.2918 �12.047

pn\cl �19.4961 �58.731 �18.4440 �57.310 �16.6628 �54.943 �12.9928 �50.221

pn\pn �8.8627 �38.482 �7.3267 �36.999 �4.6983 �34.559 0.8080 �29.792

pn\sl �1.8641 �21.256 �0.9261 �19.847 0.7327 �17.551 4.4467 �13.192

pn\fr 1.0333 �8.896 2.7048 �7.531 5.7818 �5.478 12.7216 �1.892

Table 7

Approximate tc;1ð0Þ of pn–pn beam in Ref. [14] compared with ‘exact’ values

g �0:25p2 �0:5p2 �0:75p2 �1:0p2 �2:0p2 �3:0p2

tc;1ð0Þ Ref [14] �8.63 �7.36 �6.08 �4.77 0.657 4.97

tc;1ð0Þ present �8.62544 7.36038 �6.07450 �0.76796 0.66028 6.39550
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3. Concluding remarks

The system parameters of the title problem are the constant part of the axial force and the
constant of proportionality of the varying component. The mode shape differential equation was
solved by the method of Frobenius. The frequency equations were listed for 16 combinations of
classical boundary conditions and the first three frequency parameters are tabulated for example
combinations of system parameters. The effect of an increase in one or both of the system
parameters was to cause an increase in the frequency parameter. Computations failed if the
system parameters were large. This was due to the limitation on the ‘precision’ of the computing
facility. Euler buckling occurs for the combination of the system parameters at which a frequency
parameter is zero. A necessary (but not sufficient) condition for the onset of buckling is if one or
both system parameters are negative. Example pairs of critical system parameters are tabulated.
Some critical system parameter pairs obtained by Rayleigh–Ritz method are compared with
‘‘exact’ values obtained by the analytical method.
The results tabulated may be used to judge frequencies and the buckling pairs of system

parameters obtained by numerical methods.

Appendix A. Nomenclature

anþ1ðcÞ coefficients in Eq. (5)
A;B constants in Eq. (11)
c exponent in Eq. (5)
D;Dn d=dX ; dn=dX n

EðX Þ;F ðX Þ; solution functions of Eq. (10)
GðX Þ;HðX Þ
EI flexural rigidity of beam
L length of beam
m mass per unit length of beam
MðxÞ amplitude of bending moment
QðxÞ amplitude of shearing force
MðX Þ;QðX Þ dimensionless bending moment, shearing force Eq. (3)
n ¼ 0; 1; 2;yN

TðxÞ axial force at abscissa x
Tð0Þ;TðLÞ axial force at O and at A

UðX Þ;VðX Þ functions in Eq. (11)
x abscissa
X dimensionless abscissa Eq. (3)
yðxÞ amplitude of beam deflection
Y ðX Þ dimensionless amplitude Eq. (3)
Y ðX ; cÞ a solution Eq. (11)
a frequency parameter Eq. (3)
g axial force variation parameter Eq. (3)
gc;1; gc;2 the first two critical g
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tðX Þ dimensionless axial force
tð0Þ; tð1Þ dimensionless axial force at O and A
tc;1ð0Þ; tc;2ð0Þ the first two critical tð0Þ
a frequency parameter Eq. (3)
o a natural frequency
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